
 
 This project examines the spatial distribution of residential rooftop so-
lar adoption across towns within the I-495 Beltway of Massachusetts, us-
ing 2023 image data as a snapshot year. Leveraging a high-resolution solar 
panel identification model developed by ESRI, rooftop solar installations 
were mapped from satellite imagery and analyzed for geographic cluster-
ing using Local Moran’s I — a spatial autocorrelation method that identi-
fies statistically significant hot and cold spots. Solar patters were also com-
pared to median household income at the census tract level, using data 
from the American Community Survey (ACS). By integrating solar infra-
structure data with localized income levels, this study aims to assess 
whether wealthier communities are more likely to participate in the transi-
tion to clean energy, and to identify potential disparities in solar access 
across the region.  

Using a custom python script, satellite imagery data was 
scraped off of the MassGIS Aeriel 2023 Image database. 

 

The images were then mosaiced together into a singular ras-
ter on ArcGIS Pro 

 

Running ESRI’s solar classification model, bounding boxes 
around positively identified solar panels are outputted and 
formatted into point data for analysis 

 

Using Census population data, the number of solar panels 
was normalized and aggregated by census tracts 

 
To test for statistically significant results, local moran’s I was 
used to identify census tracts with relative high or low solar 
adaptation and compared to income data. 

 

Shapefiles for ACS medium household income were compiled 
and joined to the current solar count tract data and a linear 
regression was conducted. 

The ESRI Solar Panel Detection model is a deep learning-based tool de-
signed to automate the identification of rooftop solar panels in high-
resolution aerial or satellite imagery. Built on the Mask R-CNN architecture 
and implemented through the ArcGIS API for Python, the model is capable 
of detecting individual solar panels by generating bounding boxes around 
them (as shown in the image below). 
 
It accepts inputs such as raster images, mosaic datasets, or image services 
with a spatial resolution of 5–15 centimeters, and outputs a feature class 
delineating detected panel locations. Designed for U.S. geographies, the 
model achieves an average precision of 0.76, making it a reliable solution 
for large-scale solar infrastructure mapping. Its GPU-accelerated inference 
capabilities allow for efficient processing of large image sets, offering a 
scalable alternative to traditional survey-based methods. 

To run the model, I used 2023 aerial imagery from MassGIS, which pro-
vides statewide satellite photographs at a 15 cm spatial resolution. These 
image tiles were first downloaded using a custom Python script that 
scraped and unpacked .zip files directly from the MassGIS server. After 
download, the tiles were mosaiced together in ArcGIS Pro to create a uni-
fied raster suitable for model input. Processing the full dataset through 
the ESRI model required approximately 12 hours of compute time, and 
yielded over 12,500 detected solar panels across the study area. 
 
The ESRI model provides a powerful and scalable approach to solar panel 
detection, however, several limitations should be noted. The model identi-
fies individual solar panels, not entire systems, which can complicate com-
parisons with installer-reported or utility-scale data. False positives—such 
as skylights or reflective surfaces—may inflate counts, while false nega-
tives can occur when panels are obscured by shadows or roof angles.  
 
Despite these challenges, this method remains highly effective. Traditional 
sources such as permit records, utility interconnection data, or surveys are 
often incomplete, inconsistent, or difficult to access. By automating detec-
tion through high-resolution imagery, this approach enables consistent, 
replicable measurement of solar adoption across large geographic areas. 

Despite the correlative trend in medium income and solar adaptation, the 

Local Moran’s I analysis of solar panel distribution showed fewer statisti-

cally significant high-high clusters in these outer tracts than expected. In 

contrast, a distinct low-low cluster appeared in downtown Boston, indi-

cating a statistically significant grouping of census tracts with low solar 

adoption surrounded by similarly low-adopting neighbors. This may reflect 

urban barriers to solar deployment such as denser building stock, limited 

roof access, and higher proportions of renters versus homeowners.  

A linear regression analysis confirmed a statistically significant relationship 

between median household income and solar adoption. With a coefficient 

of 0.000086 and a p-value of 0.00029, the model indicates that as income 

increases, so does the number of rooftop solar installations—underscoring 

the socioeconomic disparity in access to clean energy technologies  

 Coefficient Std Deviation t statistic Probability 

Medium Household 
Income 0.000086 0.000024 3.651849 0.00029 

Intercept 13.895298 2.930407 4.741763 0.000003 

The aggregation of solar panel counts by census tract—normalized using 

population data—revealed a clear concentration of per-capita rooftop 

solar adoption in the suburban areas surrounding Boston. Even after 

normalization, solar installations were more prominent on the outskirts 

of the city, particularly in wealthier suburban towns along the 495 Belt-

way. This spatial trend closely mirrored the distribution of median 

household income, with higher-income census tracts located outside of 

downtown Boston also exhibiting higher per-capita solar adoption.  

This project identified a clear and statistically significant linear relationship 
between median household income and the number of rooftop solar pan-
els across census tracts in the 495 Beltway of Massachusetts These find-
ings are consistent with existing research on energy justice, which often 
highlights economic privilege as a key driver of access to clean energy in-
frastructure. By combining machine learning-based detection methods 
with spatial statistical analysis, this project was able to provide a replica-
ble, data-driven approach to mapping solar adoption and exploring its so-
cioeconomic dimensions. 
 
It is important to acknowledge several limitations that may have influ-
enced the analysis. The ESRI solar detection model likely introduced both 
false positives and false negatives, skewing results. Additionally, although a 
strong correlation between income and solar adoption was observed, cau-
sation cannot be assumed. However, the spatial consistency of the trend 
and the strength of the model results lend support to the explanatory val-
ue of income as a key indicator of solar access in the region. 
 
To extend this research, future studies could incorporate a multivariate lin-
ear regression framework to account for the interaction of multiple factors 
that influence solar adoption. Methodological improvements could include 
integrating zoning laws, permit data, and utility interconnection records to 
better explain solar adoption patterns. Additionally, refining panel detec-
tion for accuracy, and expanding the analysis across Massachusetts or to 
other cities for broader comparison would proved more effective results. 
 
Ultimately, this project establishes a scalable, data-driven framework for 
analyzing rooftop solar adoption and its relationship to income, offering a 
powerful tool for assessing clean energy equity. By identifying spatial 
patterns and disparities, the study helps highlight communities that may 
be underserved in the renewable energy transition and provides a founda-
tion for more inclusive policy efforts.  
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Data Sources: MassGIS Data: 2023 Aerial Imagery| Socio-economic data:  

American Community Survey 1-year 2023 estimates, census Census tracts | ESRI  

Projection System: NAD 1983 StatePlane Massachusetts FIPS 2001 (Meters) 


