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Abstract
The 2007 Milford Flat fire was the largest in Utah history, 

burning an area of 1,469 square km in southwestern Utah. 

This study aims to explore the way vegetation bounced 

back in this area over the course of three summers 

post-fire. The main goal of this work is to identify 

regions where additional rehabilitation efforts would 

have been useful (areas that had more difficulty 

rebounding) and examine whether there are 

commonalities between these regions spatially. This 

study uses spectral data from Landsat 4-5 TM Level-2. 

This is surface reflectance, which gets rid of atmospheric 

effects. First, the extent of the fire was analyzed using the 

difference in Normalized Burn Ratio (NBR), immediately 

pre and post fire. K-means clustering of a four year time-

stacked image of NBR is done to identify trends within 

pixels of rebound and examine whether rebound differed 

spatially during these 3 years. Then, geospatial data such 

as elevation, slope, and distance to water as well as 

spectral data, like burn severity and pre-fire NDVI, is 

used in an autologistic regression to predict areas of 

good rebound.
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Visualization of raw spectral images from Landsat 4-5 

collected from USGS EarthExplorer. All resizing, 

indices, and time stacking was done using ENVI 6.0 

software

Analysis Steps:

1. Gathered Landsat 4-5 TM Level-2 spectral reflectance data 

from immediately before the fire and after the fire, as well as 

spectral data from the same season for three years following the 

Milford Flat Fire, totaling 5 images.

2. Resized spectral images to fire extent

3. Calculated Normalized Burn Ratio (NBR) for each 

image.

NBR = (Band 4 – Band 7) / (Band 4 + Band 7)

4. Created a time stack of each NBR following the fire

(four timestamps) to proxy vegetation rebound over the

years pixel by pixel.

5. Used K-Means clustering algorithm on the time-

stacked image to examine trends in vegetation rebound

6. Randomly sampled 1000 pixels from each cluster and 

plotted them to identify which clusters rebounded the

best.

7. Identified cluster 4 as unburned areas that bypassed the

masks, clusters 1 and 3 as having the best vegetation

rebound, and cluster 2 as having less successful

recovery after 3 years.
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Analysis Steps:

1. After identifying  the cluster with the best rebound,  

we converted the clustered map to a binary map 

where clusters 1 and 3 are coded as (1) and clusters 

2 and 4 are coded as (0).

2. Gathered geospatial predictors and performed 

ESDA, finding that all of these are spatially 

correlated, but have no issues with multicollinearity

3. Use the geospatial predictors in a logistic regression 

with the binary raster as the response variable to get 

probabilities of good rebound by pixel Trained on 

80% of data, tested on 20%. Predicted using the 

training data on the full raster after testing to get a 

raster of probabilities

4. Use these probabilities to create an autocovariate 

term to account for the spatial correlation of the 

response (Rooks 2rd order). Do autologistic 

regression with the autocovariate using the same 

80/20 split

5. Compare the accuracy metrics

6. Train on full datasets and produce probability 

rasters to compare spatially

This area is within the Basin and Range province, which is characterized by arid 

climate, with alternating higher elevation and lower valleys. The flora are 

typically specialized high-desert plants:  sagebrush, saltbush, scrub oak, Utah 

juniper, etc, with different species adapted to the various elevations and 

conditions. 

This varied study area offers a unique 

opportunity at analyzing post-fire 

response by examining different 

geospatial variables. The goal of this 

project is to use spectral images 

immediately pre and post fire, as well 

as readily available geospatial data to 

predict where rebound will be best. 

This can help identify and pinpoint the 

locations to focus rehabilitation efforts. 

Input Rasters Response Raster

Model Performance on Test Pixels:

Logistic Regression
Model summary after training on all pixels: 

Autologistic Regression

Conclusions:
• The models are extremely similar, with the 

autologistic probability map smoothing out 

the logistic probability map. 

• All the input variables were significant in 

predicting three-year spectral response with 

a significance level of .005 for both models

• Between the logistic and autologistic model, 

the coefficients kept the same signs but 

decreased in magnitude, likely meaning this 

effect shifted to the autocovariate vs raster 

predictors.

• In the autologistic model, the autocovariate 

was significant and the pseudo r-squared 

value increased, meaning the spatial model 

improved prediction.

• The computational expense of the 

autologistic model may not be worthwhile if 

the goal is a simple, usable model to help 

local agencies pick areas for intervention after 

a fire.Photo from AP

Model Performance on Test Pixels: Model summary after training on all pixels: 

Autologistic Regression Summary

Pseudo R-squared 0.1563

Autologistic Coefficients

 (All p-values significant at 0.005)

Elevation -0.0011

Distance to Water -2.631

Pre-fire NDVI –0.0048

Burn Severity 3.877

Autocovariate 0.3085 

Autologistic Regression Summary

Pseudo R-squared 0.1481

Autologistic Coefficients

 (All p-values significant at 0.005)

Elevation -0.0022

Distance to Water -6.122

Pre-fire NDVI –0.0153

Burn Severity 12.007

Autologistic Regression Summary

Accuracy 0.739

AUC 0.756

Precision Class 1(Better rebound) 0.74

Recall Class 1(Better rebound) 0.42

Precision Class 0 (Worse rebound) 0.74

Recall Class 0 (Worse rebound) 0.92

Autologistic Regression Summary

Accuracy 0.742

AUC 0.756

Precision Class 1(Better rebound) 0.74

Recall Class 1(Better rebound) 0.44

Precision Class 0 (Worse rebound) 0.74

Recall Class 0 (Worse rebound) 0.91

Logistic Regression 

Predicted Probability Raster
Autologistic Regression 

Predicted Probability Raster
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