Pixels to Predictions: Mapping and Analyzing Vegetation Rebound After the 2007 Milford Flat Fire

Abstract

The 2007 Milford Flat fire was the largest in Utah history, burning an area of 1,469 square km in southwestern Utah. This study aims to explore the way vegetation bounced back in this area over the course of three summers post-fire. The main goal of this work is to identify regions where additional rehabilitation efforts would have been useful (areas that had more difficulty rebounding) and examine whether there are commonalities between these regions spatially. This study uses spectral data from Landsat 4-5 TM Level-2. This is surface reflectance, which gets rid of atmospheric effects. First, the extent of the fire was analyzed using the difference in Normalized Burn Ratio (NBR), immediately pre and post fire. K-means clustering of a four year timestacked image of NBR is done to identify trends within pixels of rebound and examine whether rebound differed spatially during these 3 years. Then, geospatial data such as elevation, slope, and distance to water as well as spectral data, like burn severity and pre-fire NDVI, is used in an autologistic regression to predict areas of good rebound.

Analysis Steps:

- Milford Flat Fire, totaling 5 images.
- 2. Resized spectral images to fire extent 1mage

NBR = (Band 4 - Band 7) / (Band 4 + Band 7)4. Created a time stack of each NBR following the fire (four timestamps) to proxy vegetation rebound over the

- years pixel by pixel.
- best.
- recovery after 3 years.

This area is within the Basin and Range province, which is characterized by arid climate, with alternating higher elevation and lower valleys. The flora are typically specialized high-desert plants: sagebrush, saltbush, scrub oak, Utah juniper, etc, with different species adapted to the various elevations and conditions.

This varied study area offers a unique opportunity at analyzing post-fire response by examining different geospatial variables. The goal of this project is to use spectral images immediately pre and post fire, as well as readily available geospatial data to predict where rebound will be best. This can help identify and pinpoint the locations to focus rehabilitation efforts.

Photo from AP

Analysis Steps:

- 2 and 4 are coded as (0).
- raster of probabilities
- 80/20 split Compare the accuracy metrics
- rasters to compare spatially

012 4 6 8 Miles Ellie Meyer

Tufts University, Civil and Environmental Engineering Department | Spatial Statistics Spring 2025

K-Means Clustering to Identify Areas with Best Rebound

Gathered Landsat 4-5 TM Level-2 spectral reflectance data from immediately before the fire and after the fire, as well as spectral data from the same season for three years following the

Calculated Normalized Burn Ratio (NBR) for each

5. Used K-Means clustering algorithm on the timestacked image to examine trends in vegetation rebound 6. Randomly sampled 1000 pixels from each cluster and plotted them to identify which clusters rebounded the

Identified cluster 4 as unburned areas that bypassed the masks, clusters 1 and 3 as having the best vegetation rebound, and cluster 2 as having less successful

Visualization of raw spectral images from Landsat 4-5 collected from USGS EarthExplorer. All resizing, indices, and time stacking was done using ENVI 6.0 software

Logistic Regression and Autologistic Regression

After identifying the cluster with the best rebound, we converted the clustered map to a binary map where clusters 1 and 3 are coded as (1) and clusters

Gathered geospatial predictors and performed ESDA, finding that all of these are spatially correlated, but have no issues with multicollinearity Use the geospatial predictors in a logistic regression with the binary raster as the response variable to get probabilities of good rebound by pixel Trained on 80% of data, tested on 20%. Predicted using the training data on the full raster after testing to get a

Use these probabilities to create an autocovariate term to account for the spatial correlation of the response (Rooks 2rd order). Do autologistic regression with the autocovariate using the same

Train on full datasets and produce probability

Accuracy

Model Performance on Test Pixels:

Autologistic Regression Summary

Precision Class 1(Better rebound)

Recall Class 0 (Worse rebound)

Logistic Regression

0.739

0.74

Model summary after training on all pixels:

	Autologistic Regression Summary					
	Pseudo R-squared					
-	Autologistic Coefficients					
	(All p-values significant at 0.005)					
	Elevation	_(
	Distance to Water					
	Pre-fire NDVI					
	Burn Severity					
		and the second se				

Treeision Class T(Detter rebound)	0.74 0.42 0.74		Flovation	0.0022		
Recall Class 1(Better rebound)			Distance to Water	-6.122		
Precision Class 0 (Worse rebound)			Pre-fire NDVI	-0.0153		
Recall Class 0 (Worse rebound)	0.92		Burn Severity	12.007		
Au Model Performance on Test	tologist Pixels:	Regression – Iodel summary after	training on all pixels			
Autologistic Regression Summary		Δ	utologistic Regression S	ummary		
Accuracy	0.742	Ps	seudo R-squared	0.156		
AUC	0.756	A	Autologistic Coefficients			
Precision Class 1(Better rebound)	0.74	(/	All p-values significant a	at 0.005)		
Pagell Class 1 (Patter rehound)	0.44	El	evation	-0.001	1	
Recall Class 1(Better redould)		D	istance to Water	-2.63	1	
Precision Class 0 (Worse rebound) 0.74		Pr	e-fire NDVI	-0.0048	2	

Burn Severity

Autocovariate

3.87

0.3085

Example of two different pixel profiles of the immediate post-fire to three-year post-fire time-stacked NBR image showing different rebound patterns

K-means Cluster of timestacked NBR image showing distinct spatial clusters with different rebound patterns. Clusters 1 and 3 had the best vegetation rebound

Input Rasters

Conclusions:

- The models are extremely similar, with the autologistic probability map smoothing out the logistic probability map.
- All the input variables were significant in predicting three-year spectral response with a significance level of .005 for both models
- Between the logistic and autologistic model, the coefficients kept the same signs but decreased in magnitude, likely meaning this effect shifted to the autocovariate vs raster predictors.
- In the autologistic model, **the autocovariate** was significant and the pseudo r-squared value increased, meaning the spatial model improved prediction.
- The computational expense of the autologistic model may not be worthwhile if the goal is a simple, usable model to help local agencies pick areas for intervention after a fire.

References

Balch, J. K. B. A. Bradley, C. M. D'Antonio, J. Gómez-D	ar
increases regional fire activity across th	
Change Biology 10, 172, 192	e
Bright, B.C., Hudak, A.I., Kennedy, R.E. et al. Examinin	g
Landsat time series analysis in three we	s
ecol 15, 8 (2019). https://doi.org/10.118	6/
DEM models courtesy of the Utah Geospatial Resource	С
Distance to water pulled from 2023 ESRI data from Tufts	s I
Duniway, M. C., E. Palmquist, and M. E. Miller. 2015. Ev	/a
the Milford Flat Fire: successes, failures	i, 1
6(5):80. http://dx.doi.org/10.1890/ES14-	0
Khairani, Nabila & Sutoyo, Edi. (2020). Application of K-I	Μ
Determination of Fire-Prone Areas Utiliz	zir
Province, International Journal of Advar	nC
9-16, 10,25008/ijadis.v1i1.13.	
Landsat-5-5 images courtesy of the U.S. Geological Sur	Ve
Miller Mark & Bowker Matthew & Revolds Richard &	G
treatments and wind erosion – Lessons	fr
Apolian Research 7 29-44 10 1016/i a	20
USDI BLM [United States Department of Interior, Bureau	
OSDI BLIM [Onited States Department of Interior, Bureau	л (114
area emergency stabilization and renab	
1742-1. USDI BLM, Washington, D.C., U	J:
Xuexia Chen, James E. Vogelmann, Matthew Rollins, De	or
Chengguan Huang & Hua Shi (2011) De	et

vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest International Journal of Remote Sensing, 32:23, 7905-7927, DOI: 10.1080/01431161.2010.524678 Zerbe K, Cook T, Vulcano A. Multivariate spatial regressions help explain wildfire hot spot intensities in Washington, USA. Nat Hazards Res. 2024;4(2):288-294. doi:10.1016/i.nhres.2023.11.006

ns. 2013. Introduced annual grass arid western USA (1980-2009). Global post-fire vegetation recovery with ern North American forest types, fire

enter. Accessed April 2025 I-drive, accessed April 2025 ting rehabilitation efforts following nd controlling factors. Ecosphere eans Clustering Algorithm for

g Hotspots in West Kalimantan y, accessed April 2025

oldstein, Harland. (2012). Post-fire land rom the Milford Flat Fire, UT, USA. olia.2012.04.001. of Land Management]. 2007. Burned tation handbook. BLM Handbook H-

nald Ohlen, Carl H. Key, Limin Yang, tecting post-fire burn severity and